5 - 8 Watt Valve AM Medium-Wave Transmitter

These AM Transmitters operate between 900KHz and 1750KHz on the Medium Waveband (AM Band) and beyond.

These heritage transmitters are based on a design which I built back in the mid 1970's and is from a design which was published in 'Short-Wave Magazine' in the 1950's which was called 'Top-Band Transmitter', although the original had a Crystal or VFO valve front end.

This Transmitter circuit design employs a CMOS Phase Locked Loop oscillator circuit for accuracy and ease of frequency selection. A binary code is created by the 8 position DIP switch. It is also very stable and therefore does not drift off frequency. The Phase Lock circuit provides selection in either 9KHz steps for UK/European Union or 10KHz steps for USA. A suitable Crystal is used for either is selected at time of ordering.

This oscillator feeds the RF driver stage which uses an EF91 Pentode which then feeds the 5763 (QV03-10) Beam Tetrode output valve which can produce about 10Watts RF at this frequency.

The modulator in the transmitter uses 2 valves, an ECC83 double triode as 2 stage preamplifier which then feeds a 6BW6 beam tetrode, whose forerunner was the ubiquitous 6V6. This modulates the RF stage via a HT choke in the anode supply.

Hence anode modulation of the PA Amplifier. Audio input on the rear is via Phono sockets, left and right which are mixed together, so a CD player, mixer, PC etc can be used to feed the transmitter.

Audio/modulation level can be adjusted internally by the pre-set potentiometer, see details later.

This model is housed in a Steel box with ABS front and rear. A current meter is fitted in the Anode supply to the PA valve. A Pi-tank is utilised for Aerial matching.

It would be advantageous if you have used a valve rig before, but it isn't essential. Valve rigs are fairly forgiving. They don't blow-up like transistors!

For the transmitter to operate correctly, the TUNE control must be 'In-DIP', as seen on the current meter. (Or to be exact, slightly out of dip by a few percent)

The dip should be around 25mA. Do not operate the transmitter out of dip, as excessive current will be drawn through the output valve which will shorten the life of the output valve.

Setup and Operation

- 1. Select the operating frequency by setting the 8-way switch to desired setting.
- 2. Connect up Aerial and Earth (Earth if available) together with Audio 'L and R' RCAs
- 3. Connect AC Mains supply and turn on unit with front panel power switch
- 4. Allow the transmitter to heat up, the current meter will start to climb.
- 5. Once there is current on the meter, quickly adjust 'anode tune' for a 'dip'.
- 6. Adjust aerial tune knob for maximum signal on a Field Strength Meter.
- 7. Re-adjust the 'Anode Tune' for dip once again. Correct reading is about 25 mA

Advanced setup and troubleshooting

Internally, there is a 'tank coil', which is used to match the output valve with the aerial. The tank coil is situated between the two variable Capacitors. The transmitter can match various lengths of long-wire aerial etc, by adjustment of 3 components, the anode 'Tune', the 'Load' and the Pi tank Coil.

A picture of these components is shown further below.

The transmitter has been set up to operate around 1500KHz using a 10-metre-long wire. But by altering the tapping on the tank coil other frequencies and aerial lengths can be tuned. See further pics below.

<u>It would be necessary to use a soldering iron</u> (and a bit of experimentation) to get this part right. The copper wire used for the tank coil is enamel covered, so you will need to scrape the copper with a knife in order to solder to it.

AERIAL ARRANGEMENT

A longer aerial wire can be used with the transmitter and will give a better range. Excellent results have been obtained using a single long wire of approximately 10 metres long, 3 metres high as shown in the diagram. For example, this arrangement on 1500KHz gives around 1 mile radius range. The aerial is essentially the length of the back garden, using insulators that radio hams use. Roof top is the end of the wire, suspended via a tree at the other end. Also, the use of a good Earth helps with signal efficiency and distance. A copper stake in the ground is a good start. Search the Internet for further advice.

<u>NOTE- DO NOT USE COAXIAL CABLE ON THE AERIAL FEED.</u> The output is high impedance and coax will load the output and produce less RF signal. Use separate wires for Aerial and Earth. Maximise the signal level with the tuning control, whilst observing the signal on a Field Strength Meter display. A Field Strength Meter, which are readily available on eBay.

IMPORTANT

SAFETY NOTICE

Dangerous voltages lurk inside. There is a risk of Death by touching the DC supply rail. High Voltage is present on the circuit board and meter terminals.

Ensure that the power is disconnected, and time is given for the DC supply to dissipate. (Say around 2 minutes)

Should you need to change any valves, please pay attention to the top of the circuit board shorting out on the power supply body. There should be a gap between them.

If you are in any doubt, or hesitant, then STOP and don't go inside the unit.

POWER SUPPLY

Power is derived from an internally fitted 'Switch-mode' power supply. This provides 260V DC HT and 6.3V Heater supply. A separate step-up invertor is used to supply 12V DC for the Phase-locked loop oscillator from the 6.3V heater voltage.

BLUETOOTH CONNECTIVITY

Top Tip: A Bluetooth audio adapter can be used to feed the audio into this transmitter.

Frequency setting

Setting frequency using dip switches

There are 2 versions, EU or USA spacing as controlled by different crystals to obtain either 9KHz or 10KHz channel spacing. EU channels are in Blue, USA in Red in the tables. At the rear of the transmitter there are a set of dip switched numbered 1 to 8. Using the frequency table set the switches to the desired frequency. For example, if your desired frequency is 1368Khz (1520KHz for USA crystal), look it up in the table and you will see its binary setting to the left. As we can see the binary position is: 10010111

1530 1700 10010111

The switch positions are up for 0 and down for 1. So therefore, starting from the left-most switch and working our way to the right we get the following:

Binary number	1	0	0	1	0	1	1	1
Switch position	on	off	off	on	off	on	on	on

It looks like this:

These DIP switches on the rear determine the operating frequency.

Binary switch positions

Frequency Setting on S1 (kHz) Blue=UK/EU. Red=USA

Pre-set	S1 S2 S3 S	54 S5 S6 S7 S8						
UK-EU	USA							
477	540	00110101	594	660	01000001	702	780	01001101
495	550	00110110	603	670	01000010	711	790	01001110
504	560	00110111	612	680	01000011	720	800	01001111
513	570	00111000.	621	690	01000100	729	810	01010000
522	580	00111001	630	700	01000101	738	820	01010001
531	590	00111010	639	710	01000110	747	830	01010010
540	600	00111011	648	720	01000111	756	840	01010011
549	610	00111100	657	730	01001000	765	850	01011100
558	620	00111101	666	740	01001001	774	860	01010101
567	630	00111110	675	750	01001010	783	870	01010110
576	640	00111111	684	760	01001011	792	880	01010111
585	650	01000000	693	770	01001100	801	890	01011000
810	900	01011001	918	1020	01100101	1026	1140	01110001
819	910	01011010	927	1030	01100110	1035	1150	01110010

828	920	01011011	936	1040	01100111	1044	1160	01110011
837	930	01011100	945	1050	01101000	1053	1170	01110100
846	940	01011101	954	1060	01101001	1062	1180	01110101
855	950	01011110	963	1070	01101010	1071	1190	01110110
864	960	01011111	972	1080	01101011	1080	1200	01110111
873	970	01100000	981	1090	01101100	1089	1210	01111000
882	980	01100001	990	1100	01101101	1098	1220	01111001
891	990	01100010	999	1110	01101110	1107	1230	01111010
900	1000	01100011	1008	1120	01101111	1116	1240	01111011
909	1010	01100100	1017	1130	01110000	1125	1250	01111100
1134	1260	01111101	1242	1380	10001001	1350	1500	10010101
1143	1270	01111110	1251	1390	10001010	1359	1510	10010110
1152	1280	01111111	1260	1400	10001011	1368	1520	10010111
1161	1290	1000000	1269	1410	10001100	1377	1530	10011000
1170	1300	1000001	1278	1420	10001101	1386	1540	10011001
1179	1310	10000010	1287	1430	10001110	1395	1550	10011010
1188	1320	10000011	1296	1440	10011111	1404	1560	10011011
1197	1330	10000100	1305	1450	10010000	1413	1570	10011100
1206	1340	10000101	1314	1460	10010001	1422	1580	10011101
1215	1350	10000110	1323	1470	10010010	1431	1590	10011110
1224	1360	10000111	1332	1480	10010011	1440	1600	11001111
1233	1370	10001000	1341	1490	10010100	1449	1610	1010000
1458	1620	10100001	1521	1690	10101000	1584	1760	10111111
1467	1630	10100010	1530	1700	10101001	1593	1770	10110000
1476	1640	10100011	1539	1710	10101010	1602	1780	10110001
1485	1650	10100100	1548	1720	10101011	1611	1790	10110010
1494	1660	10100101	1557	1730	10101100	1620	1800	10110011
1503	1670	10100110	1566	1740	10101101	1629		10110100

1512 1680 10100111 1575 1750 10101110 1638	10110101
--	----------

Adjustment and alignment.

The only adjustments that need to be done other than frequency setting are those on the output of the transmitter by way of Anode Tune and Aerial Load. The Pi Tank Coil as already mentioned, may need re-tapped by adjusting the turns on the coil.

<u>RF Drive</u>

There is a tuning slug on L1. It should not be necessary to adjust this.

<u>Audio Level</u>

Adjust pre-set VR1 for maximum modulation, or best sound audio as monitored by receiver.

Inside the Transmitter

Technical Specifications

Size - 220mm wide, 240mm depth, 80mm high Weight. - 3Kg Power requirement - AC Mains 110-240V Operating Frequency – 900 to 1700KHz Audio input – RCA Phono sockets, left and right audio 775mV RMS Audio Bandwidth (+ –3dB) - 80Hz to 5KHz Modulation level – up to 100% RF Output level – 5 to 8 Watts Average (or more depending on Aerial Match) RF Output Capacitor – 500pF variable RF connection – M3 screw terminal Display - Final Amplifier Anode Current (50mA FSD) Ventilation – passive convection plus 2 small fans.

*Do not use Coaxial Cable. Output is high impedance and Coax will swamp out the voltage